Phosphorus
Phosphorus is a component of certain enzymes and proteins, adenosine triphosphate (ATP), ribonucleic acids (RNA), deoxyribonucleic acids (DNA) and phytin. ATP is involved in various energy transfer reactions, and RNA and DNA are components of genetic information.

Phosphorus (P) deficiency
Figure 11 is severe phosphorus (P) deficiency during flowering. Fan leaves are dark green or red/purple, and may turn yellow. Leaves may curl under, go brown and die. Small-formed buds are another main symptom.
Phosphorus deficiencies exhibit slow growing, weak and stunted plants with dark green or purple pigmentation in older leaves and stems.

Some deficiency during flowering is normal, but too much shouldn't be tolerated. Red petioles and stems are a normal, genetic characteristic for many varieties, plus it can also be a co-symptom of N, K, and Mg-deficiencies, so red stems are not a foolproof sign of P-deficiency. Too much P can lead to iron deficiency.

Purpling: accumulation of anthocyanin pigments; causes an overall dark green color with a purple, red, or blue tint, and is the common sign of phosphate deficiency. Some plant species and varieties respond to phosphate deficiency by yellowing instead of purpling. Purpling is natural to some healthy ornamentals.


Figure 12 shows Phosphorus (P) deficiency during vegatative growth. Many people mistaken this for a fungus, but look for the damage to occur near the end of leave, and leaves the color dull greyish with a very brittle texture.



Phosphorus (P) Toxicity
This condition is rare and usually buffered by pH limitations. Excess phosphorus can interfere with the availability and stability of copper and zinc.