Cannabis: A Source of Useful Pharma Compounds Neglected in India

Jacob Bell

New Member
In Europe and in the New World where Cannabis was introduced very late is being cultivated on an increasing scale as a valuable crop for industrial products, while in India where it has been cultivated since time immemorial as a fibre and food crop the cultivation is dwindling, writes N C Shah in the first part of the article

Cannabis sativa commonly known as cannabis is the earliest food, fibre, medicinal, psychoactive and oil yielding cultivated plant and for centuries ranked as one of the most important agricultural crop of the orient. It is interesting to note that in Europe and in the New World where it was introduced very late is being cultivated on an increasing scale as a valuable crop for industrial products, while in India in the Himalayan states like, Himachal Pradesh, Uttaranchal, Darjeeling (WB) and Sikkim, where it has been cultivated since time immemorial as a fiber and food crop the cultivation is dwindling. Certain useful pharmaceutical compounds found in different parts of the plants are as follows.

Female inflorescence, seed, seed oil and seed cake: Chemical composition

Female inflorescence: The chemical composition hemp inflorescence of female flowers contain about 15-20 per cent of resin and a total of 483 natural chemical components, which have been isolated and identified. The cannabinoids are the most distinctive active constituent found only in the Cannabis plant and the most important one is (-)-D9-trans-tetrahydrocanabinol, commonly referred to as D9-THC. The total 483 chemical constituents can further be grouped into the following distinct classes; cannabinoids - 66; nitrogenous compounds - 27; amino acids - 18; proteins, glycoproteins and enzymes - 11; sugars and related compounds - 34; hydrocarbons - 50; simple alcohols - 7; simple aldehydes - 12; simple ketones - 13; Simple acids - 21; fatty acids - 22; simple esters and lactones - 13; steroids - 11; terpenes -120; non-cannabinoid phenols - 25; flavonoids - 21; vitamins - 1; pigments - 2; elements-9, (ElSohly 2002).

Seed composition : According to Duke (1983) the composition of Asian seeds per 100 g is: moisture - 13.6 g and protein - 27.1 g; fat - 25.6 g; carbohydrate total - 27.6 g; fiber - 20.3 g; ash - 6.1 g; calcium - 120 mg; phosphorus - 970 mg; iron - 12.0 mg; beta-carotene - 5 mg; thiamine - 0.32 mg; riboflavin - 0.17 mg; niacin - 2.1 mg and K calories 421 have been reported.

Seed oil composition: The hemp seed oil contains 25 per cent to 35 per cent of oil and it is the lowest in saturated fats 9-11 per cent of total volume of oil. The oil pressed from the seed contains, a number of saturated and unsaturated essential fatty acids such as; oleic acid, linoleic acid (LA), linolenic and isolinolenic acids (LNA & ILNA), respectively.

The composition of seed cake or defated meal: According to Duke (1983) the seed cake contains water - 10.8 per cent; fat - 10.2 per cent; protein - 30.8 per cent; N-free extract - 40.6 per cent; and ash - 7.7 per cent; (K20 - 20.3 per cent; Na20 - 0.8 per cent; CaO - 23.6 per cent; MgO - 5.7 per cent; Fe2O3 - 1.0 per cent; P2O5 - 36.5 per cent; SO3 - 0.2 per cent; SiO2 - 11.9 per cent; Cl - 0.1 per cent; and a trace of Mn2O3). A crystalline protein globulin has been isolated from defatted meal and it contains; glycocol - 3.8 per cent; alanine - 3.6 per cent; valine and leucine - 20.9 per cent; phenylalanine - 2.4 per cent; tyrosine -2.1 per cent; serine - 0.3 per cent; cystine - 0.2 per cent; proline - .1 per cent; oxyproline - 2.0 per cent; aspartic acid - 4.5 per cent; glutamic acid - 18.7 per cent; tryptophane and arginine - 14.4 per cent; lysine -1.7 per cent; and histidine - 2.4 per cent.

Unrefined seed oil composition after Leson & Pless, et al, (2002 p. 411)
Analyses Hemp Oil
Saturated fatty acids Individual saturated fatty acids percentage
Palmitic acid (16:0) 6-9 per cent
Stearic acid (18:0) 2-3.5 per cent
Arachidic acid (20:0) <1-3 per cent
Behenic acid (22:0) 0.3 per cent
Total saturated fatty acid 9-11 per cent
Unsaturated fatty acids Individual unsaturated fatty acids percentage
Oleic acid (18:1 w-9) 8.5-16 per cent
Linoleic acid (18:2 w-6) 53-60 per cent
g-Linolenic acid GLA (18:3 w-6) 1-4 per cent
a-Linolenic acid (18:3 w-3) 15-25 per cent
Stearidonic acid (18:4 w-3) 0.4-2 per cent
Eicosanoic acid (20:1) <0.5 per cent
Total unsaturated fatty acids 89-91 per cent
Chemical Analyses
Vitamin E 100-150 mg/100 g (mostly g-tocopherol)
13-20 IU/100g (as a-tocopherol equivalents)
Chlorophyll 50-20 ppm
THC content 2-20 ppm
Specific gravity 0.92 kg/1
Iodine value 155-170
Peroxide value 4-7 meq 02/kg
Free fatty acids 1.5-2.0% as Oleic acid
Phosphatides 100-400 ppm

Essential oils: Novak et al, (2001) extracted and reported the main constituents from the essential oil as alpha-pinene, myrcene, trans-beta-ocimene, alpha-terpinolene, trans-caryophyllene and alpha-humulene. The content of alpha-terpinolene divided the cultivars in two distinct groups, an Eastern European group with 8 per cent and a French group of cultivars of around 16 per cent, respectively. The antimicrobial activity of the essential oil was reported as modest. However, delta-9-tetrahydrocannabinol could not be detected in any of the essential oils and the amount of other cannabinoids was very poor.

Pharmacological, clinical and nutritional values

According to Burger (1986 p.81) the mind-affecting constituents of cannabis are the tetrahydro-cannabinols, etc., and it is reported to lower the elevated intraocular pressure during glaucoma. D9 - THC has specific anti-emetic property. Vomiting is a serious side effect of irradiation or of drug administration in cancer therapy and other antiemetic drugs usually produce incomplete and variable results. For the last 15 years patients undergoing such treatments, have claimed that marijuana smoking is quite beneficial in alleviating or preventing such emesis. The antiemetic effect of D9- THC is presently being evaluated in numerous clinics and quite possibly will become a standard treatment in the near future.

In modern medicine possible uses of cannabis are; in glaucoma, alleaviating the pains of cancer and in chemotherapy. It has been observed Lewis lung adenocarcinonoma growth has been retarded by oral administration of D9-tetrahydrocannabinol, D9-tetrahydrocannabinol and cannabinol, but not by cannabidiol. The D9-THC also inhibits the replication of Herpes simplex virus, which generally observed after chemotherapy to the cancer patients.

Pate (1995) has given the potential uses of Cannabis and its chemicals in eighteen ailments and diseases such as; Aid's patients appetite stimulation; amelioration; nausea; chemotherapy; approved uses of THC in cancer; anxiety and psychosis; asthma; epilepsy; glaucoma; inflammation and swelling; microbial infections; movement disorder; spasticity and other neuromuscular disorders; multiple sclerosis; niemann-pick disease; opiate and alcohol addiction and pain and ulcer.

According to Bayer (2001) Cannabis helps to cope with some of the difficult symptoms and treatment associated with AIDS. In spite of a need for more rigorous scientifically controlled research, an increasing number of persons with AIDS are using cannabis because they find it controls nausea, increases appetite, promotes weight gain, decreases pain and improves mood.

D9-THC is the pharmacologically and toxicologically most relevant constituent of the hemp plant, responsible for most of the effects of natural cannabis preparations. According to Grotenhermen (2002) the following dose-dependent effects were observed in clinical studies in vivo or in vitro, respectively, as described under:

Intraocular pressure: Marijuana smoking reduced intraocular pressure in patients with glaucoma and added to the effects of conventional glaucoma medications. It has been argued that since all of the conventional medications and further support the use of marijuana as a medicinal adjunct to the treatment of the second leading cause of blindness in the United States.

Brachycardia syndromes and insomonia: Numerous other medicinal applications of the D9-tetrahydrocannabinol (THC) the major active constituent of marijuana and other marijuana derived cannabinoids have been described. In man these derivatives produce tachycardia, an effect of possible therapeutic benefit for a variety of bradycardia syndromes, since the tachycardia effect is centrally mediated. In the treatment of insomnia, THC reduces the time required to fall asleep.

As analgesic: The analgesic effects of cannabinoids have prompted their use in the treatment of headache, dysmennorhea and is associated with metastatic cancer. Some therapeutic benefits of THC has also been shown for the treatment of asthma.

Essential oil: The antibacterial activity of the essential oil of C sativa was assessed on Staphylococcus aureus, Streptococcus faecalis, Mycobacterium smegmatis, Pseudomonas flurescens and Escherichia coli. The oil was found to be active on Gram-positive bacteria and has been used against these bacteria in cases of resistance against penicillin. The antibacterial agent appears to be cannabidiolic acid, (Oliver-Bever 1986).

Synthetic preparations

According to Grotenhermen & Russo (2002 p XXVIII) there are synthetically manufactured (-)-trans-isomer of D9-THC named as dronabinol. If it is dissolved in sesame oil and filled in capsule and known as marinol, which is available in USA, Canada and some European countries. Another synthetic drug is nabilone, which is a synthetic derivative of D9-THC with a slightly modified molecular structure. It is a registered trade mark of Eli Lilly & Co. and marketed under the name Cesamet. It is available in UK and Canada and in some other European countries.


– To be continued

The author is ex-founder director of Herbal Research & Development Institute (Govt of UP now Uttaranchal), retired scientist (CIMAP,C SIR) and also hon.coordinator, Centre for Indigenous Knowledge of Indian Herbal Resources. (CIKIHR).
Email: ncshah@sancharnet.in


Source: Cannabis: A Source of Useful Pharma Compounds Neglected in India
 
Back
Top Bottom