Cannabinoids: Defending The Epileptic Brain

Truth Seeker

New Member
Several lines of evidence suggest that cannabinoid compounds are anticonvulsant. However, the anticonvulsant potential of cannabinoids and, moreover, the role of the endogenous cannabinoid system in regulating seizure activity have not been tested in an in vivo model of epilepsy that is characterized by spontaneous, recurrent seizures. Here, by using the rat pilocarpine model of epilepsy, we show that the marijuana extract 9-tetrahydrocannabinol (10 mg/kg) as well as the cannabimimetic, 4,5-dihydro-2-methyl-4(4-morpholinylmethyl)-1-(1-naphthalenyl-carbonyl)-6H-pyrrolo[3,2,1-i,j]quinolin-6-one [R(+)WIN55,212 (5 mg/kg)], completely abolished spontaneous epileptic seizures. Conversely, application of the cannabinoid CB1 receptor (CB1) antagonist, N-(piperidin-1-yl-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamidehydrochloride (SR141716A), significantly increased both seizure duration and frequency. In some animals, CB1-receptor antagonism resulted in seizure durations that were protracted to a level consistent with the clinical condition status epilepticus. Furthermore, we determined that during an short-term pilocarpine-induced seizure, levels of the endogenous CB1 ligand 2-arachidonylglycerol increased significantly within the hippocampal brain region. These data not only indicate anticonvulsant activity of exogenously applied cannabinoids but also suggest that endogenous cannabinoid tone modulates seizure termination and duration through activation of the CB1 receptor. Western blot and immunohistochemical analyses revealed that CB1-receptor protein expression was significantly increased throughout the CA regions of epileptic hippocampi. By demonstrating a role for the endogenous cannabinoid system in regulating seizure activity, these studies define a role for the endogenous cannabinoid system in modulating neuroexcitation and suggest that plasticity of the CB1-receptor occurs with epilepsy.

CB1 Cannabinoid Receptors and On-demand Defense Against Excitotoxicity

Marsicano G, Goodenough S, Monory K, Hermann H, Eder M, Cannich A, Azad SC, Cascio MG, Gutierrez SO, van der Stelt M, Lopez-Rodriguez ML, Casanova E, Schutz G, Zieglgansberger W, Di Marzo V, Behl C, Lutz B

Science 2003;302:84—88. [PubMed]

Abnormally high spiking activity can damage neurons. Signaling systems to protect neurons from the consequences of abnormal discharge activity have been postulated. We generated conditional mutant mice that lack expression of the cannabinoid receptor type 1 in principal forebrain neurons but not in adjacent inhibitory interneurons. In mutant mice, the excitotoxin kainic acid (KA) induced excessive seizures in vivo. The threshold to KA-induced neuronal excitation in vitro was severely reduced in hippocampal pyramidal neurons of mutants. KA administration rapidly increased hippocampal levels of anandamide and induced protective mechanisms in wild-type principal hippocampal neurons. These protective mechanisms could not be triggered in mutant mice. The endogenous cannabinoid system thus provides on-demand protection against acute excitotoxicity in central nervous system neurons.

Source: Cannabinoids: Defending the Epileptic Brain
 
Back
Top Bottom