Hexahydrocannabinols and Colon Cancer Cells

Jim Finnel

Fallen Cannabis Warrior & Ex News Moderator
Induction of p53-independent apoptosis by a novel synthetic hexahydrocannabinol analog is mediated via Sp1-dependent NSAID-activated gene-1 in colon cancer cells.

Thapa D, Babu D, Park MA, Kwak MK, Lee YR, Kim JM, Kwon TK, Kim JA.

College of Pharmacy, Yeungnam University, 214-1 Dae-Dong, Gyeongsan 712-749, South Korea.

Nonsteroidal anti-inflammatory drug (NSAID)-activated gene-1 (NAG-1) has received greater attention as a novel molecular target for anti-cancer therapeutics in recent years. We identified a novel synthetic hexahydrocannabinol analog, LYR-8 [(1-((9S)-1-hydroxy-6,6,9-trimethyl-6a,7,8,9,10,10a-hexahydro-6H-benzo[c]chromen-2-yl)ethanone)], as a potent NAG-1 and apoptosis inducer in a panel of human cancer cells. LYR-8 did not possess any affinity for cannabinoid receptor CB(1) or CB(2), which eliminates the concern about potential psychoactive side effects. LYR-8 dramatically induced NAG-1 expression and apoptosis in HCT116 (wild-type p53) and HT29 (mutant p53) colon cancer cells. The NAG-1 expression by LYR-8 was not blocked by pifithrin-alpha, a specific p53 inhibitor, which was different from doxorubicin that induced p53-dependent NAG-1 transcriptional activity. The induction of NAG-1 promoter activity by LYR-8 was strongly correlated with increased Sp1 activation as noted in various luc-promoter activities. Furthermore, pretreatment with the specific Sp1 inhibitor mithramycin A completely reversed the LYR-8-induced NAG-1 expression in both HCT116 and HT29 cells. Knockdown of NAG-1 using siRNA significantly reversed LYR-8-induced cell death in both wild-type and mutant p53-expressing colon cancer cells. Furthermore, sensitization with NAG-1 inducer sulindac sulfide synergized LYR-8-induced cell death in both colon cancer cells. These results suggest that induction of NAG-1 via Sp1 activation is a promising therapeutic approach in cancer treatment, and that a novel compound like LYR-8 could be a potent chemotherapeutic agent for colon cancers including p53-mutated cancer.

Source: Induction of p53-independent apoptosis by a novel ... [Biochem Pharmacol. 2010] - PubMed result
Top Bottom